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The Queue Geo/G/1/N + 1 Revisited

M. L. Chaudhry1 ·Veena Goswami2

Abstract This paper presents an alternative steady-state solution to the discrete-time
Geo/G/1/N + 1 queueing system using roots. The analysis has been carried out for a late-
arrival system using the imbedded Markov chain method, and the solutions for the early
arrival system have been obtained from those of the late-arrival system. Using roots of the
associated characteristic equation, the distributions of the numbers in the system at vari-
ous epochs are determined. We find a unified approach for solving both finite- and infinite-
buffer systems. We investigate the measures of effectiveness and provide numerical illustra-
tions. We establish that, in the limiting case, the results thus obtained converge to the results
of the continuous-time counterparts. The applications of discrete-time queues in modeling
slotted digital computer and communication systems make the contributions of this paper
relevant.
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1 Introduction

The last two decades have seen a rise in the analysis and applications of discrete-time
queueing systems in various fields. With the advent of new technologies, the popularity
of discrete-time queueing systems can be well understood. However, when compared to
continuous-time queueing systems, there is less literature on discrete-time queueing sys-
tems due to the perceived difficulty in its analysis. A key complication during formulation
of discrete-time queueing systems is that the systems allow for simultaneous arrivals and
departures. Despite these complications, discrete-time systems are adopted in applications
that are inherently discrete, like when modeling computer and communication systems.
Extensive analysis of discrete-time queueing systems and their applications have been
reported in Alfa (2016), Bruneel and Kim (2012), Takagi (1993a), and Woodward (1994).

In real-life, most queues have finite buffer space to store incoming packets. An important
design problem in such queues is determining a buffer size such that the loss probability
is below a pre-specified value. The results for queues with finite buffer-space hold true for
any value of the traffic intensity ρ. However, when we consider queues with infinite buffer
space, the results are good only for ρ < 1. From the server’s point of view, the queue-
ing systems with finite buffer space operate most efficiently when ρ is near unity. In such
situations, one of the main concerns of the system designers is the estimation of block-
ing probability, which, in general, is kept small to avoid loss of packets. Further, one may
obtain the results of infinite buffer space by taking a large value of the finite buffer space.
Gravey and Hébuterne (1992) investigated simultaneity in discrete-time Bernoulli inputs
single server queues with finite- and infinite- buffers. Lee et al. (1999) computed the state
probabilities of the Geo/G/1/K queue directly from the state equations. However, they
did not obtain the system-length distributions at a pre-arrival epoch or at a random epoch.
The analytic study related to the impact of the size of the waiting room on a queue with
a random input process has been carried out in Finch (1958). Computational analysis of
continuous-time M/G/1/N + 1 and GI/M/1/N + 1 queues using roots has been pre-
sented in Chaudhry et al. (1991). Historically, when MAPLE and Mathematica could not
find a large number of roots (they do now), a software package called QROOT developed
by Chaudhry (1992) was used by him and his collaborators to find a large number of roots
and use them in solving several queueing models. The algorithm for finding such roots is
available in Chaudhry et al. (1990). It may be remarked here that MAPLE can now not only
find roots that are close to each other (a concern expressed by several researchers including
(Akar 2006) and Neuts (1981)), but even the repeated roots.

In discrete-time queues, time is assumed to be divided into intervals of the same length
called slots. We solve finite waiting space Geo/G/1/N + 1 for both late and early arrival
systems using the roots method which computes numerical results efficiently. Limited work
has been reported on the computational aspect of the Geo/G/1/N + 1 system. The roots
method has never been applied to discrete-time finite-buffer space queues. Another charac-
teristic of applying the roots method is that the number of roots to be found is independent
of the number of waiting spaces. Also, it shows that both the systems Geo/G/1/N + 1
and Geo/G/1 can be solved using the roots method leading to a unified approach for solv-
ing both the systems, see Chaudhry (2000) for Geo/G/1. Further, the efficiency of the
roots method relative to matrix-analytic has been shown in several papers, see, e.g., a recent
paper (and references therein) by Singh et al. (2016). In this paper, we find closed-form
expressions for the limiting distribution of the number in the system in terms of roots of the
characteristic equation. The outcomes forGeo/G/1/N+1 can be computed for any service-
time distribution having a rational probability generating function. We obtain steady-state
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system-length distributions at various epochs using roots of the associated characteristic
equation. We also examine the measures of effectiveness for both the systems, and provide
numerical examples for the same.

The organization of this paper is as follows. Section 2 presents the analysis of
Geo/G/1/N + 1 system for both LAS-DA and EAS policies. We obtain steady-state
system-length distributions at post-departure, random, pre-arrival and outside observer’s
epochs. Section 3 discusses some performance measures of the system. Section 4 presents
numerical results for both LAS-DA and EAS. Section 5 shows that in the limiting case our
analytic results tend to their continuous-time counterparts. Section 6 draws the conclusions.

2 The Geo/G/1/N + 1 System

A discrete-time queueing system is specified by time-slotted service, where the events
(arrival of packets and their onward transmissions) may occur simultaneously around slot
boundaries. In the case of simultaneity, their order may be taken care of by either departure-
first (DF) or arrival-first (AF) management policies, which are also known as early arrival
system (EAS) and late arrival system with delayed access (LAS-DA), respectively. Accord-
ing to AF policy, arrivals take precedence over departures, while under DF policy the
opposite is true. The inter-arrival times are independent and geometrically distributed as
an = λλ̄n−1, 0 < λ < 1, n ≥ 1 with mean inter-arrival time a = 1/λ. We denote x̄ = 1−x

for any real number x ∈ [0, 1]. The service times {Bn, n ≥ 1} are independent and identi-
cally distributed random variables with probability mass function (pmf) bi = P(Bn = i),
i ≥ 1, corresponding probability generating function (pgf) B(z) = ∑∞

i=1 biz
i and mean

service time E[S] = B(1)(1) = b = 1/μ, where B(n)(k) is the n-th derivative of B(z) with
respect to z at z = k. The traffic intensity ρ is equal to λ/μ. The system has a finite buffer of
capacity N + 1 to retain incoming arrivals. It is assumed that inter-arrival times and service
times are mutually independent and the service discipline follows first-come, first-served
(FCFS).

2.1 The LAS-DA System

In this subsection, we study a discrete-time Geo/G/1/N + 1 queue under the late arrival
system with delayed access. In LAS-DA, potential arrivals take place in the interval (t−, t)

and potential departures take place in the interval (t, t+). Various time epochs at which
events occur in LAS-DA are shown in Fig. 1.

Let L+
n be the system length left by the departing nth customer and let An+1 be the

number of customers arriving during the service time of the (n+1)th customer. The discrete

Fig. 1 Various time epochs in LAS-DA
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time process N+
n forms a Markov chain, L+

n+1 may be expressed in terms of L+
n and of a

random variable An+1 which is independent of L+
n . Then

L+
n+1 =

{
min(L+

n − 1 + An+1, N), if L+
n ≥ 1,

min(An+1, N), if L+
n = 0.

(1)

Let kj be the probability that j arrivals occur during a service time. For all n ≥ 1,

kj = lim
n→∞ P(An+1 = j) =

∞∑

k=j

bk

(
k

j

)

λj λ̄k−j , j ≥ 0.

Define the pgf of the sequence {kj , j = 0, 1, . . .} by K(z) = ∑∞
j=0 kj z

j . Thus

K(z) =
∞∑

j=0

∞∑

k=j

bk

(
k

j

)

λj λ̄k−j zj =
∞∑

k=0

bk

k∑

j=0

(
k

j

)

(λz)j λ̄k−j

=
∞∑

k=0

bk(λ̄ + λz)k = B(λ̄ + λz). (2)

The one-step transition probabilities for the underlying Markov chain are obtained as

pij = Pr{L+
n+1 = j |L+

n = i} =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

kj , 0 ≤ j ≤ N − 1, i = 0
kj−i+1, i − 1 ≤ j ≤ N − 1, 1 ≤ i ≤ N
∞∑

l=N

kl, j = N, i = 0

∞∑
l=N−i+1

kl, j = N, 1 ≤ i ≤ N.

(3)

leading to the transition probability matrix P for the Markov chain as

P = (pij ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 3 . . . N − 1 N

0 k0 k1 k2 k3 . . . kN−1 1 −
N−1∑

i=0
ki

1 k0 k1 k2 k3 . . . kN−1 1 −
N−1∑

i=0
ki

2 0 k0 k1 k2 . . . kN−2 1 −
N−2∑

i=0
ki

...
...

...
...

. . .
...

...
...

N 0 0 0 0 . . . k0 1 − k0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let p+ = (p+
0 , p+

1 , . . . , p+
N) be the limiting distribution of the imbedded chain. Using the

transition probabilities of Eq. 3 in the system of equations p+P = p+, the steady-state
probabilities at departure instants are as follows

p+
n = p+

0 kn +
n+1∑

j=1

p+
j kn−j+1, 0 ≤ n ≤ N − 1, (4)

p+
N = p+

0

∞∑

n=N

kn +
N∑

j=1

p+
j

∞∑

n=N−j+1

kn, (5)
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with the normalization condition
N∑

j=0
p+

j = 1. It may be noted that Eq. 5 is expressed

by the first N equations of Eq. 4, thus, Eq. 5 is redundant and it will not be considered
hereafter. Let P +(z) be the pgf of the sequence p+

n . Multiplying Eq. 4 by zn and summing
over n = 0, 1, . . . , N , we get pgf as

P +(z) =
N∑

n=0

p+
n zn = p+

0

N−1∑

n=0

knz
n +

N−1∑

n=0

zn
n+1∑

j=1

p+
j kn−j+1 + p+

NzN

= p+
0

(

K(z) −
∞∑

n=N

knz
n

)

+
N∑

j=1

p+
j zj−1

⎛

⎝K(z)−
∞∑

l=N−j+1

klz
l

⎞

⎠+p+
NzN, (6)

where the power seriesK(z) is absolutely convergent. Simplifying Eq. 6 and taking p̂N+j =
(p+

0 + p+
1 )kN+j + p+

2 kN+j−1 + . . . + p+
N−1kj+2 + p+

Nkj+1, we obtain

P +(z) = p+
0 (1 − z)K(z)

K(z) − z
+

zN+1

(
∞∑

j=0
p̂N+j z

j − p+
N

)

K(z) − z
. (7)

The left-hand side of Eq. 7 is a pgf for the number of customers in the system after a
departure for 0 ≤ n ≤ N . It is evident that p+

n is the coefficient of zn, n = 0, 1, . . . , N in
the first term and the second term contains higher powers of zn, n ≥ N + 1. The second
term of right-hand side of Eq. 7 may be omitted, as it makes no contribution to the left-side
part. In addition, since K(z) is a probability generating function, the statement is true for
any K(z). Thus, p+

n , n = 0, 1, . . . , N can be evaluated from the following

P +(z) = p+
0 (1 − z)K(z)

K(z) − z
, (8)

which is the same as pgf of an infinite buffer case (see Chaudhry (2000) or Takagi (1993a)).
It may be noted that Eq. 8 represents the pgf of infinite buffer Geo/G/1 queue when ρ < 1.
In the case of Geo/G/1/N + 1 queue, the probabilities for all values of ρ need to be
computed. It may be mentioned here that if at a random epoch the number of states is
N + 1, it will be N at a departure epoch. To derive the probabilities {p+

n }N0 , one of the
ways is a power series expansion of the right-hand-side of Eq. 8 for a suitable region of
convergence, and computation of {p+

n } in terms of {p+
0 } which in turn can be computed

using normalization condition. Also, without using the probability generating function one
can get the solution recursively, for details see Bhat (2015). The system Geo/G/1 has been
solved using the roots method, see Chaudhry (2000) or Kobayashi and Mark (2009). We
obtain {p+

n }N0 using roots and partial-fraction expansion of P +(z) in order to give, as stated
earlier, a unified approach to solving the system Geo/G/1/N +1 as well as Geo/G/1 (see
Chaudhry (2000)). Further, since the pgf of many distributions can be approximated by a
rational function, we assume that B(z) is a rational function of z given by

B(z) = U(z)

V (z)
, (9)

where V (z) and U(z) are polynomials of degree k and less than k, respectively. Using (9)
in Eq. 8, we get

P +(z) = p+
0 (z − 1)f (z)

zg(z) − f (z)
, (10)
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where

K(z) = U(λ̄ + λz)

V (λ̄ + λz)
= f (z)

g(z)
.

The denominator of Eq. 10 is a polynomial of degree (k + 1) with z = 1 being a zero of
both the numerator and the denominator. The term

zg(z) − f (z) = 0, (11)

has (k + 1) roots, one of the roots being 1, and the other k roots (real or complex), assumed
to be distinct, denoted as αi; i = 1, 2, . . . , k.

Remark If the Eq. 11 has either repeated roots or the roots that are very close to each other,
we can find them using modern mathematical software packages. The MAPLE script below
illustrates the computation of repeated roots for the equation

h(x) = (x − 1)(x − 2)3(x − 3)2(x − 5).

restart : Digits :=10: with(RootFinding) :
h := (x − 1) ∗ (x − 2)3 ∗ (x − 3)2 ∗ (x − 5);
Analytic( h, x, re = -1 .. 10, im = -2 .. 10 ) ;
2.00000000000000, 2.00000000000000, 2.00000000000000, 3.00000000000000,
3.00000000000000, 1.00000000000000, 5.00000000000000

From Eq. 10, we obtain

P +(z) = Tf (z)
∏k

i=1(z − αi)
, (12)

where T is a normalizing constant. If all the roots are not distinct, a little change in the
partial-fraction method is required (Kobayashi et al. (2011), pp. 221). As we are discussing
finite buffer queueing system, there are three cases ρ < 1, ρ = 1 and ρ > 1.

– When ρ < 1 all the roots αi, i = 1, 2, . . . , k remain outside the unit circle | z |= 1.
– When ρ = 1, one root is equal to one, say α1 = 1 and the other roots αi, i = 2, 3, . . . , k

are outside the unit circle | z |= 1.
– When ρ > 1, one root is inside the interval (0, 1), say α1 and the other roots αi, i =

2, 3, . . . , k are outside the unit circle | z |= 1.

It is observed that when ρ > 0 increases, one positive real root approaches the origin from
right to left. The other αi roots stay outside the unit circle. Applying partial-fraction method,
we get from Eq. 12 as

P +(z) = T

k∑

i=1

Ci

z − αi

, (13)

where

Ci = f (αi)
∏k

j=1,j �=i (αi − αj )
.

Using (13), we get

p+
n = T

k∑

i=1

−Ci

αn+1
i

, n = 0, 1, . . . , N. (14)
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Applying the normalization condition
N∑

n=0
p+

n = 1, we can find the unknown T as

T =

⎧
⎪⎪⎨

⎪⎪⎩

−
[
∑k

i=1
Ci

αi
× 1−α

−(N+1)
i

1−α−1
i

]−1

, if ρ �= 1,

−
[

C1(N + 1) + ∑k
i=2

Ci

αi
× 1−α

−(N+1)
i

1−α−1
i

]−1

, if ρ = 1.

It is seen that, once all the roots are computed, we can find the distribution of the number
in the system.

Remark When the service time follows geometric distribution with mean 1/μ,

we have K(z) = μ(λ̄+λz)

1−μ̄(λ̄+λz)
. Using (8), we find P(z) = p0

[
1 + λz

λ̄μ−λμ̄z

]
=

p0

[

1 + λz

λ̄μ

{
1 − λμ̄z

λ̄μ

}−1
]

. Expanding and collecting the coefficient of zn, we get pn in

terms of p0 and using normalization condition the unknown p0 is computed.

2.1.1 System-Length Distribution at a Random Epoch

Suppose {pn, n = 0, 1, . . . , N + 1} is the probability that at a random epoch there are n

customers in the system. Let {p̃n, n = 0, 1, . . . , N + 1} be the probability that an arrival at
a slot boundary finds n customers in the system whether it joins the queue or not. Since the
property that Bernoulli-arrivals-see-time-averages holds, we get

p̃n = pn, n = 0, 1, . . . , N + 1. (15)

As arrivals and departures take place one by one, the probability distribution {p̃n}N0 for the
number in the system immediately before an arrival is the same as the probability distribu-
tion {p+

n }N0 for the number in the system immediately after a service-completion, excluding
those that find the system blocked. In other words, {p̃n}N0 is the conditional probability that
an arriving customer finds the system is not blocked. Since the probability that the system
is not blocked is 1 − pN+1, the effective rate of arrival is λ(1 − pN+1). The mean number

of busy servers (the carried load a
′
) is a

′ =
N+1∑

n=1
pn = 1 − p0. The carried load a

′
is also

defined as the fraction of the offered load (ρ = λb) that is accepted by the system. It is also
the probability that the server is busy immediately at an arbitrary slot boundary. Using the
law that rate-in must equal rate-out, we get

λ(1 − pN+1) = μ(1 − p0) = μ a
′
. (16)

Further, using the level crossing law which expresses that the distribution seen by an arriving
customer whether he joins the queue or not is the same as that seen by departing customer,
we have

λpn = μ(1 − p0)p
+
n . (17)

Considering Eqs. 16 and 17, we get

pn = (1 − p0)p
+
n

ρ
= a

′

ρ
p+

n , 0 ≤ n ≤ N and pN+1 = 1 − a
′

ρ
. (18)
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Setting n = 0 in Eq. 18 and using (16), we obtain

a′ = ρ

p+
0 + ρ

. (19)

Substituting Eqs. 19 into 18, we get

pn = p+
n

p+
0 + ρ

, n = 0, 1, . . . , N, (20)

pN+1 = 1 −
N∑

n=0

pn = 1 − 1

p+
0 + ρ

. (21)

Thus, we can compute all the probabilities at random epoch {pn, n = 0, 1, . . . , N + 1}.

2.1.2 System-Length Distribution at a Pre-arrival Epoch

Let p−
n (0 ≤ n ≤ N) be the probability that there are n customers in the system at a slot

boundary.

p−
n = P {n in the system at t − | arrival occurs before the end of the slot}

= λpn
∑N

i=0 λpi

= λpn

λ(1 − pN+1)
= pn

1 − pN+1
= p+

n , n = 0, 1, . . . , N.

Remark 2 When N → ∞, the model reduces to Geo/G/1/∞ queueing system with p−
n =

pn = p+
n .

2.1.3 System-Length Distribution at an Outside Observer’s Epoch

Let po
n (n = 0, 1, . . . , N + 1) be the probability that there are n customers in the sys-

tem at an outside observer’s observation epoch. From Fig. 1, one may notice that the
outside observer’s observation epoch in LAS-DA system falls somewhere in the time
interval (t+, (t + 1)−). That is, an outside observer’s observation epoch falls in a time
interval that commences just after a potential departure and instantly before a potential
arrival. Therefore, random epoch and outside observer’s distributions are the same, that is,
po

n = pn, 0 ≤ n ≤ N + 1.

2.2 The Early Arrival System

In an early arrival system, a potential arrival occurs in (t, t+) and a potential departure
takes place in (t−, t). We obtain the results for Geo/G/1/N + 1 queue with EAS from
Geo/G/1/N + 1 queue with LAS-DA. Since we have already obtained the distributions
of the numbers in system at various epochs in LAS-DA, by using those results we obtain
similar distributions for EAS. Various-time epochs at which events occur in EAS are shown
in Fig. 2.

Further, let q+
n (0 ≤ n ≤ N) be the post-departure epoch stationary probabilities in the

case of EAS. Observing Figs. 1 and 2, we can relate the departing customer’s distributions
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Fig. 2 Various time epochs in early-arrival system (EAS)

of LAS-DA and EAS. Noting that in the finite buffer-space the post-departure probabilities
will go up to N , they are given by

p+
0 = λ̄q+

0 (22)

p+
n = λ̄q+

n + λq+
n−1, n = 1, 2, . . . , N − 1, (23)

p+
N = q+

N + λq+
N−1. (24)

As the probabilities p+
n are known, we can obtain the probabilities {q+

n }N0 , recursively, from
Eqs. 22–24.

2.2.1 System-Length Distribution at a Random Epoch

Let qn (0 ≤ n ≤ N + 1) be the probability that at a random epoch there are n customers in
the EAS system. Now, we develop relations among qn and q+

n . In this case, the input rate is

λ(1 − qN+1) and the output rate is the inverse of E[S] + λ̄q+
0

λ
which leads to

λ(1 − qN+1) = λ

ρ + λ̄q+
0

.

This gives

qN+1 = 1 − 1

ρ + λ̄q+
0

. (25)

Following the argument relating pn to p+
n , we obtain

qn = (1 − qN+1)q
+
n = q+

n

ρ + λ̄q+
0

, n = 0, 1, . . . , N. (26)

2.2.2 System-Length Distribution at a Pre-arrival Epoch

Let q−
n (0 ≤ n ≤ N) be the probability that there are n customers in the system at a

pre-arrival epoch. Then

q−
n = P {n in the system at t − | arrival occurs before the end of the slot}

= λqn
∑N

i=0 λqi

= λqn

λ(1 − qN+1)
= qn

1 − qN+1
= q+

n , n = 0, 1, . . . , N.

2.2.3 System-Length Distribution at an Outside Observer’s Epoch

Let qo
n (0 ≤ n ≤ N + 1) be the probability that there are n customers in the system at

an outside observer’s observation epoch. In EAS, the outside observer’s observation epoch
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falls in an interval after a potential arrival and before a potential departure. The outside
observer’s distribution may be computed using the relation

qo
0 = λ̄q0, (27)

qo
n = λ̄qn + λqn−1, n = 1, 2, . . . N, (28)

qo
N+1 = qN+1 + λqN . (29)

It can be easily seen that po
n = pn = qo

n , that is, system-length distribution at outside
observer’s observation epoch is the same in both LAS-DA and EAS. The queue length at
service completion in the EAS model will be less than that of the corresponding LAS-DA
model by the number of customers that indeed arrive at that slot boundary. It is to be noted
that queue length is always evaluated immediately after a slot boundary, which gives the
difference between the two models.

3 Performance Measures

In this section, we discuss various performance measures. It may be mentioned here that
Little’s law agrees at the outside observer’s observation epoch. As we have seen earlier that
pn = po

n = qo
n , the average number of customers in the queue (Lo

q ) and the average number
of customers in the system (Lo

s ) will remain the same in both the systems (LAS-DA and
EAS). They are given by

Lo
q =

N+1∑

n=1

(n − 1)po
n =

N∑

n=1

np+
n

p+
0 + ρ

+ (N + 1)

(

1 − 1

p+
0 + ρ

)

−
N+1∑

n=1

pn

= 1

p+
0 + ρ

N∑

n=0

np+
n + (N + 1) − N + 1

p+
0 + ρ

− (1 − p0)

= a
′

ρ

N∑

n=0

np+
n + (N + 1) − (N + 1)a

′

ρ
− a

′
. (30)

and

Lo
s =

N+1∑

n=1

npo
n == a′

ρ

N∑

n=0

np+
n + (N + 1) − (N + 1)a′

ρ
. (31)

The probability that the server is busy (PB) at a random epoch is given by 1− p0 = a
′
. The

effective arrival rate (λe) is given as λe = λ(1 − pN+1) = λ

p+
0 +ρ

= λa
′

ρ
. The mean waiting

time in the queue (E[Wq ]) and in the system (E[Ws]) can be computed using Little’s law as

E[Wq ] = Lo
q

λe

= 1

λ

N∑

n=0

np+
n + N + 1

λ

(
ρ

a
′ − 1

)

− b, (32)

E[Ws] = Lo
s

λe

= 1

λ

N∑

n=0

np+
n + N + 1

λ

(
ρ

a
′ − 1

)

. (33)
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Remark 3 If N → ∞, then a
′ = ρ and

Lo
q =

∞∑

n=1

npo
n − ρ, Lo

s =
∞∑

n=1

npo
n, E[Ws] = 1

λ

∞∑

n=0

npo
n ⇒ λE[Ws] = Lo

s ,

E[Wq ] = 1

λ

∞∑

n=0

npo
n − b ⇒ λE[Wq ] = Lo

q.

The above results match analytically with those of Takagi (1993a).

4 Numerical Results

We present some numerical results in the form of tables to illustrate the analytic results
obtained in this paper. Various performance measures such as the mean system length
(Lo

s ), the mean queue length (Lo
q ), the mean waiting-time in the system (E[Ws]), the mean

waiting-time in the queue (E[Wq ]), the probability of blocking (PBL) and the probability
that the server is busy (PB) are given at the bottom of the tables.

In Table 1, the service-time distribution is taken as Discrete phase-type (DPH), where
bk = αTk-1T0, k = 1, 2, . . ., T0 = e − T e, e is the 3 × 1 column vector with all elements
equal to one, pgf is B(z) = zα(I-zT)−1T0, |z| ≤ 1 and E[S] = 2.5238095 with α =
[
0.10 0.60 0.30

]
and T =

⎡

⎣
0.30 0.30 0.40
0.05 0.00 0.40
0.10 0.20 0.30

⎤

⎦.

Table 1 System length distributions at various epochs

Geo/DPH/1/11 system

ρ = 0.504762, λ = 0.2 ρ = 1.26191, λ = 0.5

n p+
n pn = qo

n q+
n qn p+

n pn = qo
n q+

n qn

0 0.495275 0.495255 0.619094 0.619069 0.004523 0.003571 0.009045 0.007142

1 0.303638 0.303626 0.224774 0.224765 0.010661 0.008418 0.012276 0.009693

2 0.118656 0.118651 0.092127 0.092123 0.015139 0.011954 0.018002 0.014214

3 0.048651 0.048649 0.037782 0.037780 0.022196 0.017527 0.026391 0.020839

4 0.019959 0.019958 0.015503 0.015503 0.032545 0.025699 0.038699 0.030558

5 0.008189 0.008189 0.006361 0.006361 0.047723 0.037683 0.056746 0.044808

6 0.003360 0.003359 0.002609 0.002609 0.069978 0.055256 0.083210 0.065705

7 0.001378 0.001378 0.001070 0.001070 0.102612 0.081025 0.122014 0.096344

8 0.000564 0.000564 0.000438 0.000438 0.150466 0.118811 0.178918 0.141278

9 0.000230 0.000230 0.000179 0.000179 0.220634 0.174217 0.262350 0.207156

10 0.000094 0.000093 0.000072 0.000072 0.323526 0.255463 0.384702 0.303770

11 0.000048 0.000034 0.210377 0.058492

PB 0.504745 0.380931 0.996429 0.992858

Lo
s = 0.845502, Lo

q = 0.340755, PBL = 0.000048 Lo
s = 8.66204, Lo

q = 7.66562, PBL =0.210377

E[Ws ] = 4.22772, E[Wq ] = 1.70386 E[Ws ] = 21.9397, E[Wq ] = 19.4159
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Numerical results for Geo/DPH/1/11 are given in Table 1 for ρ ∈ {0.504762, 1.26191}.
Table 2 presents results for Geo/D/1/6 queueing system for ρ ∈ {0.5, 1.0, 1.25, 1.5}. Var-
ious computed performance measures are also presented. Further, it is noted that pN+1 →
1 − 1/ρ if ρ � 1. From Eq. 21, it is seen that pN+1 → 1 − 1/ρ if p+

0 = 0. For large
ρ, it is unlikely that the departed customer will see the queue empty and thus p+

0 � 0.
When p+

0 = 0, it is observed from Eq. 20 that pn = p+
n /ρ, 0 ≤ n ≤ N . When ρ < 1,

by taking N sufficiently large, the results for Geo/G/1/∞ can be obtained from those of
Geo/G/1/N + 1 system.

All the calculations have been done in double precision and rounded up after the sixth
decimal point. Note that the mean number of customers in the queue / system, the mean
waiting time in the queue / system, the blocking probability and the probability that the
server is busy increase with the increase of traffic intensity in all tables.

5 The Continuous-Time Case

Here we consider the relationship between the discrete-time Geo/G/1/N + 1 queue and
its continuous-time counterpart. Let the time axis be slotted into intervals of equal length
�t , and � > 0 is sufficiently small. For the continuous-time M/G/1/N + 1 queue, we

Table 2 System length distributions at various epochs

Geo/D/1/6 system

ρ = 0.5, λ = 0.1 ρ = 1.0, λ = 0.2

n p+
n pn = qo

n q+
n qn p+

n pn = qo
n q+

n qn

0 0.500195 0.500095 0.555772 0.555661 0.012008 0.009515 0.096153 0.089285

1 0.346890 0.346821 0.323681 0.323617 0.157827 0.146554 0.173245 0.160871

2 0.116858 0.116835 0.188212 0.174769 0.078299 0.062043 0.022031 0.014674

3 0.028400 0.028395 0.021125 0.021121 0.143228 0.113492 0.192505 0.178755

4 0.006271 0.006270 0.004621 0.004620 0.259107 0.205313 0.192295 0.178560

5 0.001382 0.001382 0.001022 0.001022 0.468767 0.371445 0.192309 0.178572

6 0.000202 0.000010 0.071427 0.035713

PB 0.499905 0.444339 0.990485 0.910715

Lo
s = 0.69888, Lo

q = 0.19897, PBL = 0.000202 Lo
s =3.06786, Lo

q = 2.13928, PBL =0.07143

E[Ws ] = 6.99016, E[Wq ] = 1.99010 E[Ws ] = 16.5192, E[Wq ] = 11.5192

ρ = 1.25, λ = 0.25 ρ = 1.5, λ = 0.3

0 0.012008 0.009515 0.016011 0.012687 0.001319 0.000879 0.001884 0.001255

1 0.038595 0.030582 0.046122 0.036547 0.006529 0.004349 0.008520 0.005675

2 0.078299 0.062043 0.089024 0.070542 0.022031 0.014674 0.027821 0.018531

3 0.143228 0.113492 0.161296 0.127809 0.069457 0.046264 0.087301 0.058150

4 0.259107 0.205313 0.291711 0.231148 0.217784 0.145062 0.273706 0.182310

5 0.468767 0.371445 0.527785 0.418211 0.682877 0.454851 0.858236 0.571654

6 0.207610 0.103057 0.333921 0.162425

PB 0.990485 0.987313 0.999121 0.998745

Lo
s = 4.41928, Lo

q = 3.42880, PBL = 0.207610 Lo
s = 5.03053, Lo

q = 4.03139, PBL =0.333921

E[Ws ] = 22.3086, E[Wq ] = 17.3086 E[Ws ] = 25.1748, E[Wq ] = 20.1747
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assume that the inter-arrival times are exponentially distributed with mean rate λ̂. So, we
have λ = λ̂�t + o(�t). If the service times S are measured in multiples of �t , then in a

discrete-time, let P(S = k�t) = bk with
∞∑

k=1
bk = 1, k�t = xk and b = n�t , where the

interval [0, b] is divided into intervals of length �t . The pgf of number of arrivals during an
interval (xk, xk+1) = 1 − λ + λz. Let

P(service ends in (t, t + �t)| service time > t) = f (t)�t + o(�t)

and bk = f (xk)�t + o(�t),

where f (·) is common density function of service times. We establish that in the limiting
case, the pgf B(1 − λ + λz) changes to a Laplace transform in the continuous-time case.
Applying the definitions of Riemann’s sum, exponential function, and improper integral,
we get

B(1 − λ + λz) = lim
b→∞ lim

�→0

b/�t∑

k=1

f (xk)
(
1 − λ̂(1 − z)�

)xk/�t

�t

=
∫ ∞

0
f (x)e−λ̂(1−z)xdx = f̄ (λ̂ − λ̂z)

= Laplace transform of pdf f (x) evaluated at λ̂(1 − z).

This leads to the probability generating function for the number in the system for
M/G/1/N + 1, that is,

P +(z) = p+
0 (1 − z)f̄ (λ̂ − λ̂z)

f̄ (λ̂ − λ̂z) − z
,

which matches with the results reported in Chaudhry et al. (1991). Further, using λ = λ̂�

and taking the limit as � → 0, in Eqs. 22–24, we have p+
n = q+

n , 0 ≤ n ≤ N , as it should.
Also, from Eqs. 20, 21 and 25–29, we obtain

pn = qn = qo
n = p+

n

p+
0 + ρ

, n = 0, 1, . . . , N, pN+1 = qN+1 = qo
N+1 = 1−

N∑

n=0

pn = 1− 1

p+
0 + ρ

,

which match with the results for the M/G/1/N +1 system given in Chaudhry et al. (1991).
It is noted that taking the limit as � → 0 and λ = λ̂� in LAS-DA as well as in EAS
systems the probabilities tend to be the same, as they should be in case of continuous-time.
Further, using (30)–(33) and taking the limit as � → 0, we establish that the mean system
length (Lo

s ), the mean queue length (Lo
q ), the mean waiting-time in the system (E[Ws]) and

the mean waiting-time in the queue (E[Wq ]) match exactly with those of continuous-time
M/G/1/N + 1 system reported in Takagi (1993b).

6 Conclusions

This paper considers the steady-state system-length distributions for the Geo/G/1/N + 1
queueing system. We obtain an analysis of the system-length distributions at post departure,
random, pre-arrival and outside observer’s observation epochs for both late and early arrival
systems using roots of the associated characteristic equation. We find a unified approach for
solving both finite- and infinite- buffer systems by using roots. The performance measures
and numerical illustrations for both the systems are carried out. We establish that in the lim-
iting case the results found in this paper tend to its continuous-time counterpart. In general,
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the analysis of discrete-time finite-buffer single-server queueing system is more involved
since the length of time a customer spends in the system may not follow the Markovian
property. These queues have applications in systems such as slotted digital computer and
communication systems, manufacturing and service facilities, transportation and telecom-
munications. Further, the method discussed in this paper could apply to more complex
discrete-time queueing systems such as finite-space bulk-arrival or bulk-service systems.
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